Abstract:Effective relevance modeling is crucial for e-commerce search, as it aligns search results with user intent and enhances customer experience. Recent work has leveraged large language models (LLMs) to address the limitations of traditional relevance models, especially for long-tail and ambiguous queries. By incorporating Chain-of-Thought (CoT) reasoning, these approaches improve both accuracy and interpretability through multi-step reasoning. However, two key limitations remain: (1) most existing approaches rely on single-perspective CoT reasoning, which fails to capture the multifaceted nature of e-commerce relevance (e.g., user intent vs. attribute-level matching vs. business-specific rules); and (2) although CoT-enhanced LLM's offer rich reasoning capabilities, their high inference latency necessitates knowledge distillation for real-time deployment, yet current distillation methods discard the CoT rationale structure at inference, using it as a transient auxiliary signal and forfeiting its reasoning utility. To address these challenges, we propose a novel framework that better exploits CoT semantics throughout the optimization pipeline. Specifically, the teacher model leverages Multi-Perspective CoT (MPCoT) to generate diverse rationales and combines Supervised Fine-Tuning (SFT) with Direct Preference Optimization (DPO) to construct a more robust reasoner. For distillation, we introduce Latent Reasoning Knowledge Distillation (LRKD), which endows a student model with a lightweight inference-time latent reasoning extractor, allowing efficient and low-latency internalization of the LLM's sophisticated reasoning capabilities. Evaluated in offline experiments and online A/B tests on an e-commerce search advertising platform serving tens of millions of users daily, our method delivers significant offline gains, showing clear benefits in both commercial performance and user experience.




Abstract:Nowadays on E-commerce platforms, products are presented to the customers with multiple modalities. These multiple modalities are significant for a retrieval system while providing attracted products for customers. Therefore, how to take into account those multiple modalities simultaneously to boost the retrieval performance is crucial. This problem is a huge challenge to us due to the following reasons: (1) the way of extracting patch features with the pre-trained image model (e.g., CNN-based model) has much inductive bias. It is difficult to capture the efficient information from the product image in E-commerce. (2) The heterogeneity of multimodal data makes it challenging to construct the representations of query text and product including title and image in a common subspace. We propose a novel Adversarial Cross-modal Enhanced BERT (ACE-BERT) for efficient E-commerce retrieval. In detail, ACE-BERT leverages the patch features and pixel features as image representation. Thus the Transformer architecture can be applied directly to the raw image sequences. With the pre-trained enhanced BERT as the backbone network, ACE-BERT further adopts adversarial learning by adding a domain classifier to ensure the distribution consistency of different modality representations for the purpose of narrowing down the representation gap between query and product. Experimental results demonstrate that ACE-BERT outperforms the state-of-the-art approaches on the retrieval task. It is remarkable that ACE-BERT has already been deployed in our E-commerce's search engine, leading to 1.46% increase in revenue.




Abstract:Online advertising in E-commerce platforms provides sellers an opportunity to achieve potential audiences with different target goals. Ad serving systems (like display and search advertising systems) that assign ads to pages should satisfy objectives such as plenty of audience for branding advertisers, clicks or conversions for performance-based advertisers, at the same time try to maximize overall revenue of the platform. In this paper, we propose an approach based on linear programming subjects to constraints in order to optimize the revenue and improve different performance goals simultaneously. We have validated our algorithm by implementing an offline simulation system in Alibaba E-commerce platform and running the auctions from online requests which takes system performance, ranking and pricing schemas into account. We have also compared our algorithm with related work, and the results show that our algorithm can effectively improve campaign performance and revenue of the platform.